Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
J Hazard Mater ; 472: 134487, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38704906

RESUMEN

Atmospheric pressure dielectric barrier discharge (DBD) plasma is an emerging and promising technique for air disinfection in public environments. Power supply is a crucial factor but it remains unclear about its impacts on the air disinfection performance of plasmas. In this work, a nanosecond (ns) pulsed power supply was applied to drive an in-duct grating-like DBD array to achieve fast single-pass air disinfection. The influence of pulse parameters and environmental factors on both the discharge characteristics and the single-pass bacterial inactivation efficiency were uncovered. At a close relative humidity (RH) level, the efficiency was dominated by the discharge power, namely, specific input energy could serve as the disinfection dose. A higher frequency, shorter pulse rising time, and suitable pulse width are preferred to obtain a higher Z value. The pulsed source was not notably superior to an alternating current source, or even worse at a low voltage frequency at the same discharge power. Airflow humidity was a predominant factor to improve the efficiency and a single-pass efficiency of ∼ 99% and a Z value of 2.2 L/J were achieved under an optimal RH of 50%-60%. This work provides fundamental knowledge of ns-pulsed DBD on discharge characteristics and air disinfection behaviors.

2.
Curr Med Chem ; 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38659263

RESUMEN

Gastric cancer was the fifth most common cancer, and its drug treatment mainly included chemotherapy, targeted therapy, and immunotherapy. With the rise of immunotherapy in gastric cancer, small-molecule anti-gastric cancer drugs still have irreplaceable places because of many advantages, such as high stability and mass-productivity, high efficiency, and low cost. At present, the small-molecule anti-gastric cancer drugs in the clinic are constrained by their side effects. So, developing more novel anti-gastric cancer drugs with better efficacy and fewer side effects is urgently needed. Nitrogen-containing heterocycle molecules have attracted much attention from researchers due to their high biocompatibility, activity, and bioavailability, and they even could act with a unique mechanism. This review summarized various types of nitrogen-containing heterocycle antigastric cancer lead compounds from 2017 to 2022 in the last five years. Compared with monocyclic nitrogen-containing heterocycle and bicyclic nitrogen-containing heterocycle, the thick nitrogen-containing heterocycle applied as the skeleton not only showed high efficiency and low toxicity but also, interestingly, may have had some unique mechanism such as inhibition of aurora A and B kinases, etc. We propose two prospective and valuable strategies to develop more efficient candidates for anti-gastric cancer. One strategy was further optimized for some lead compounds mentioned in this review. The other strategy involved utilizing the "pseudo-natural products" concept proposed by Professor Wilhelm Waldmann, combining different nitrogen-containing heterocycle fragments in two and three-dimensional spaces to obtain new thick nitrogen-containing heterocycle skeletons. The strategy will contribute to the expansion of the thick nitrogenous heterocycle's framework, and it was expected that more novel mechanisms and more effective antigastric drugs could be found. These two strategies are expected to help researchers develop more anti-gastric cancer drugs with better potency and lower side effects.

3.
Eur J Med Chem ; 271: 116405, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38678823

RESUMEN

PARPi have been explored and applied in the treatment of various cancers with remarkable efficacy, especially BRCA1/2 mutated ovarian, breast, prostate, and pancreatic cancers. However, PARPi renders inevitable drug resistance and showed high toxicity because of PARP-Trapping with long-term clinic tracking. To overcome the drug resistance and the high toxicity of PARPi, many novel methods have been developed including PROTACs. Being an event-driven technology, PROTACs needs a high affinity, low toxicity warhead with no steric hindrance in binding process. Veliparib shows the lowest PARP-Trapping effect but could hardly to be the warhead of PROTACs because of the strong steric hindrance. Other PARP1 inhibitors showed less steric hindrance but owns high PARP-Trapping effect. Thus, the development of novel warhead with high PARP1 affinity, low PARP1-Trapping, and no steric hindrance would be valuable. In this work, we reserved benzimidazole as the motif to reserve the low PARP1-Trapping effect and substituted the pyrrole by aromatic ring to avoiding the steric hindrance in PARP1 binding cave. Thus, a series of benzimidazole derivates were designed and synthesized, and some biological activities in vitro were evaluated including the inhibition for PARP1 enzyme and the PARP-Trapping effect using MDA-MB-436 cell line. Results showed that the compound 19A10 has higher PARP1 affinity(IC50 = 4.62 nM)) and similar low PARP-Trapping effect compared with Veliparib(IC50 (MDA-MB-436) >100 µM). Docking study showed that the compound 19A10 could avoiding the steric hindrance which was much better than Veliparib. So, the compound 19A10 could potentially be a perfect warhead for PARP1 degraders. Besides, because of the depletion of the PARP1 and the decreasing of the binding capability, we suppose that the PROTACs using 19A10 as the warhead would be no-PARP-Trapping effect. Furthermore, QSAR study showed that to develop novel compounds with high PARP1 binding affinity and low PARP-Trapping, we can choose the skeleton with substituent R1H, R2 = piperiazine, and R3 with large tPSA. And, if we want to develop the compounds with high PARP1 binding affinity and high PARP-Trapping which can possibly improve the lethality against tumor cells, we can choose the skeleton with substituent R1F, R2 = 3-methy-piperiazine, and R3 with large tPSA.

4.
Plants (Basel) ; 13(2)2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38256708

RESUMEN

White clover (Trifolium repens L.) is an allopolyploid plant and an excellent perennial legume forage. However, white clover is subjected to various stresses during its growth, with cold stress being one of the major limiting factors affecting its growth and development. Beta-amylase (BAM) is an important starch-hydrolyzing enzyme that plays a significant role in starch degradation and responses to environmental stress. In this study, 21 members of the BAM gene family were identified in the white clover genome. A phylogenetic analysis using BAMs from Arabidopsis divided TrBAMs into four groups based on sequence similarity. Through analysis of conserved motifs, gene duplication, synteny analysis, and cis-acting elements, a deeper understanding of the structure and evolution of TrBAMs in white clover was gained. Additionally, a gene regulatory network (GRN) containing TrBAMs was constructed; gene ontology (GO) annotation analysis revealed close interactions between TrBAMs and AMY (α-amylase) and DPE (4-alpha-glucanotransferase). To determine the function of TrBAMs under various tissues and stresses, RNA-seq datasets were analyzed, showing that most TrBAMs were significantly upregulated in response to biotic and abiotic stresses and the highest expression in leaves. These results were validated through qRT-PCR experiments, indicating their involvement in multiple gene regulatory pathways responding to cold stress. This study provides new insights into the structure, evolution, and function of the white clover BAM gene family, laying the foundation for further exploration of the functional mechanisms through which TrBAMs respond to cold stress.

5.
Int J Syst Evol Microbiol ; 73(11)2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37917543

RESUMEN

A novel mesophilic, chemolithoautotrophic, hydrogen-oxidizing bacterium, designated strain ST1-3T, was isolated from mud sediment samples collected from mangroves in Jiulong River estuary. The cells were Gram-stain-negative, non-motile and rod-shaped. The temperature, pH and salinity ranges for growth of strain ST1-3T were 4-45 °C (optimum, 35 °C), pH 5.0-8.5 (optimum, pH 7.0) and 0-8.0 % (w/v) NaCl (optimum, 4.0 %). The isolate was an obligate chemolithoautotroph capable of growth using hydrogen as the only energy source, and molecular oxygen, thiosulphate and elemental sulphur as electron acceptors. The major cellular fatty acids of strain ST1-3T were summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c), C16 : 0 and summed feature 8 (C18 : 1 ω7c). The major polar lipids were phosphatidylethanolamine, phosphatidyldimethyl ethanolamine and phosphatidylglycerol. The respiratory quinone was menaquinone-6. The genomic DNA G+C content was 43.6 mol%. Phylogenetic analysis based on 16S rRNA gene sequences and core genes showed that the novel isolate belonged to the genus Sulfurovum and was most closely related to Sulfurovum lithotrophicum 42BKTT (94.7 % sequence identity). The average nucleotide identity and digital DNA-DNA hybridization values between ST1-3T and S. lithotrophicum 42BKTT were 74.6 and 16.3 %, respectively. On the basis of the phenotypic, phylogenetic and genomic data presented here, strain ST1-3T represents a novel species of the genus Sulfurovum, for which the name Sulfurovum mangrovi sp. nov. is proposed, with the type strain ST1-3T (=MCCC M25234T=KCTC 25639T).


Asunto(s)
Ácidos Grasos , Hidrógeno , Ácidos Grasos/química , Filogenia , ARN Ribosómico 16S/genética , Técnicas de Tipificación Bacteriana , ADN Bacteriano/genética , Análisis de Secuencia de ADN , Composición de Base , Bacterias/genética , Sedimentos Geológicos/microbiología , Oxidación-Reducción , Fosfolípidos/química
6.
Cell Tissue Res ; 394(1): 229-241, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37526735

RESUMEN

Meiotic entry is one of the earliest sex determination events of the germ cell in higher vertebrates. Although advances in meiosis onset have been achieved in mammals, birds and fish, how this process functions in reptiles is largely unknown. In this study, we present the molecular analysis of meiosis onset and the role of retinoic acid (RA) in this process in the red-eared slider turtle. Our results using Stra8 as a pre-meiosis indicator show that in the female embryonic gonad, meiosis commitment starts around stage 19. Additionally, signals of the meiosis marker Sycp3 could be detected at stage 19 and become highly expressed by stage 23. No expression of these genes was detected in male embryonic gonads, suggesting the entry into meiosis prophase I was restricted to female embryonic germ cells. Notably, RA activity in fetal gonads is likely to be elevated in females than that in males, as evidenced by the higher expression of RA synthase Aldh1a1 and lower expression of RA-degrading enzyme Cyp26a1 in female gonads prior to meiotic entry. In addition, exogenous RA treatment induced the expression of Stra8 and Sycp3 in both sexes, whether in vivo or in vitro. Together, these results indicate that high levels of RA in the embryonic female gonads can lead to the initiation of meiosis in the turtle.

7.
Phytomedicine ; 119: 154975, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37517171

RESUMEN

BACKGROUND: Mitochondria is critic to tubulopathy, especially in diabetic kidney disease (DKD). Huangkui capsule (HKC; a new ethanol extract from the dried corolla of Abelmoschus manihot) has significant clinical effect on DKD. Previous studies have shown that HKC protects kidney by regulating mitochondrial function, but its mechanism is still unclear. The latest research found that the stimulator of interferon genes (STING1) signal pathway is closely related to mitophagy. However, whether HKC induces mitophagy through targeting STING1/PTEN-Induced putative kinase (PINK1) in renal tubular remains elusive. OBJECTIVE: This study aims to clarify the therapeutic effect of HKC on renal tubular mitophagy in DKD and its potential mechanism in vivo and in vitro. METHODS: Forty male C57BL/6 mice were randomly divided into 5 groups: CON group, DKD group, HKC-L (1.0 g/kg/day, by gavage), HKC-H (2.0 g/kg/day), and LST group. Diabetes model was induced by high-fat diet (HFD) combined with intraperitoneal injection of Streptozotocin (STZ). LST (losartan) is used as a positive control drug. Then, the glomeruli, renal tubular lesions, mitochondrial morphology and function of renal tubular cells and mitophagy levels were detected in mice. In addition, a high glucose injury model was established using HK2 human renal tubular cells. Pretreate HK2 cells with HKC or LST and detect mitochondrial function, mitophagy level, and autophagic flux. In addition, small interfering RNAs (siRNAs) of STING1 and PINK1 and overexpressing pcDNA3.1 plasmids were transfected into HK-2 cells to validate the mitophagy mechanism regulated by STING1/PINK1 signaling. RESULTS: The ratio of urinary albumin to creatinine (ACR), fasting blood glucose, body weight in the early DKD mice model was increased, with damage to the glomerulus and renal tubules, mitochondrial structure and dysfunction in the renal tubules, and inhibition of STING1/PINK1 mediated mitophagy. Although the fasting blood glucose, body weight and serum creatinine levels were hardly ameliated, high dose HKC (2.0 g/kg/day) treatment significantly reduced ACR in the DKD mice to some extent, improved renal tubular injury, accurately upregulated STING1/PINK1 signaling mediated mitophagy levels, improved autophagic flux, and restored healthy mitochondrial pools. In vitro, an increase in mitochondrial fragments, fusion to fission, ROS and apoptosis, and a decrease in respiratory function, mtDNA, and membrane potential were observed in HK2 cells exposed to high glucose. HKC treatment significantly protected mitochondrial dynamics and function, which is consistent with in vivo results. Further research has shown that HKC can increase the level of mitophagy mediated by STING1/PINK1 in HK2 cells. CONCLUSIONS: Our results suggest that HKC ameliorates renal tubulopathy in DKD and induces mitophagy partly through the up-regulation of the STING1/PINK1 pathway. These findings may provide an innovative therapeutic basis for DKD treatment.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Ratas , Masculino , Ratones , Humanos , Animales , Nefropatías Diabéticas/metabolismo , Mitofagia , Glucemia , Ratas Sprague-Dawley , Ratones Endogámicos C57BL , Transducción de Señal , Proteínas Quinasas/metabolismo , Peso Corporal
8.
medRxiv ; 2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37333364

RESUMEN

Rapid, simple, and low-cost diagnostic technologies are crucial tools for combatting infectious disease. Here, we describe a class of aptamer-based RNA switches called aptaswitches that recognize specific target nucleic acid molecules and respond by initiating folding of a reporter aptamer. Aptaswitches can detect virtually any sequence and provide a fast and intense fluorescent readout, generating signals in as little as 5 minutes and enabling detection by eye with minimal equipment. We demonstrate that aptaswitches can be used to regulate folding of six different fluorescent aptamer/fluorogen pairs, providing a general means of controlling aptamer activity and an array of different reporter colors for multiplexing. By coupling isothermal amplification reactions with aptaswitches, we reach sensitivities down to 1 RNA copy/µL in one-pot reactions. Application of multiplexed one-pot reactions against RNA extracted from clinical saliva samples yields an overall accuracy of 96.67% for detection of SARS-CoV-2 in 30 minutes. Aptaswitches are thus versatile tools for nucleic acid detection that can be readily integrated into rapid diagnostic assays.

9.
Genetics ; 224(1)2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-36947451

RESUMEN

Estrogen signaling exerts a decisive role in female sex determination and differentiation in chicken and fish. Aromatase encoded by Cyp19a1 is the key enzyme that catalyzes the conversion of androgen to estrogen. Correlative analyses implicate the potential involvement of aromatase in reptilian sexual development, however, the direct genetic evidence is lacking. Herein, we found that Cyp19a1 exhibited temperature-dependent sexually dimorphic expression, and located in the medullary somatic cells in early female embryos of the red-eared slider turtle (Trachemys scripta elegans), before the gonad is distinct. To determine the functional role of Cyp19a1 in turtle ovarian determination, we established loss- and gain-of-function models through in ovo lentivirus-mediated genetic manipulation. At female-producing temperature, inhibition of aromatase or knockdown of Cyp19a1 in turtle embryos resulted in female-to-male sex reversal, with the formation of a testis-like structure and a male distribution pattern of germ cells, as well as ectopic expression of male-specific markers (SOX9 and AMH) and disappearance of ovarian regulator FOXL2. On the contrary, overexpression of Cyp19a1 at male-producing temperature led to male-to-female sex reversal. In conclusion, our results suggest that Cyp19a1 is both necessary and sufficient for ovarian determination in the red-eared slider turtle, establishing causality and a direct genetic link between aromatase and reptilian sex determination and differentiation.


Asunto(s)
Tortugas , Animales , Femenino , Masculino , Tortugas/genética , Aromatasa/genética , Aromatasa/metabolismo , Procesos de Determinación del Sexo/genética , Mutación con Ganancia de Función , Estrógenos/metabolismo , Temperatura , Diferenciación Sexual/genética
10.
Chem Biol Drug Des ; 101(6): 1335-1347, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36752693

RESUMEN

Poly (ADP-ribose) polymerase-1 (PARP-1) inhibitors have been successfully applied in the clinical treatment of various cancer. Side effects and drug resistant cases were reported, and more effective PARP-1 inhibitors were required. However, studies on the AD site of PARP-1 inhibitors are currently incomplete. Therefore, to synthesize more potential candidate PARP-1 inhibitors and disclose some AD site SAR of the PARP-1 inhibitors, herein, a series of 2-phenyl-benzimidazole-4-carboxamide derivatives using different saturated nitrogen-contained heterocycles as linker group (6a-6t) have been designed, synthesized, and evaluated PARP-1 inhibitory activity and proliferation inhibitory against BRCA-1 mutant MDA-MB-436 cell line in vitro. The results showed 6b (IC50 = 8.65 nM) exhibited the most PARP-1 enzyme inhibitory activity comparable with Veliparib (IC50 = 15.54 nM) and Olaparib (IC50 = 2.77 nM); 6m exhibited the strongest MDA-MB-436 cell anti-proliferation activity (IC50 = 25.36 ± 6.06 µM) comparable with Olaparib (IC50 = 23.89 ± 3.81 µM). The compounds 6b, 6r, and 6m could be potential candidates for effective PARP-1 inhibitors and valuable for further optimization. The analysis of activity data also showed that the holistically anti-proliferation activity of the 1,4-diazepane group was about~twofold than that of the piperazine group. Meanwhile, the terminal 3-methyl-furanyl group exhibited the most robust PARP-1 inhibitory and anti-proliferation activity. It is hoped that the results could benefitable for further optimization of PARP-1 inhibitors. Furthermore, we note that some compounds (6d,6g,6n,6p,6s) showed poor PARP-1 inhibitory (>500 nM) but relatively good anti-proliferation activity, which indicates the proliferation inhibitory mechanism against MDA-MB-436 cell line was worth investigating in-depth.


Asunto(s)
Antineoplásicos , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Poli(ADP-Ribosa) Polimerasa-1 , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Relación Estructura-Actividad , Aminoimidazol Carboxamida/farmacología , Antineoplásicos/farmacología , Línea Celular Tumoral , Proliferación Celular
11.
Front Microbiol ; 13: 1051281, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36483193

RESUMEN

One new prenylated benzenoid, (±)-chevalieric acid (1), and four new anthraquinone derivatives, (10S,12S)-, (10S,12R)-, (10R,12S)-, and (10R,12R)-chevalierone (2-5), together with ten previously described compounds (6-15), were isolated from the fungus Aspergillus chevalieri (L. Mangin) Thom and Church. The structures of new compounds were elucidated by extensive 1D and 2D nuclear magnetic resonance (NMR), and HRESIMS spectroscopic analysis. The absolute configurations of 2-5 were determined by experimental and calculated electronic circular dichroism (ECD) and DP4+ analysis. Compound 10 showed weak cytotoxicity against human lung cancer cell line A549 with IC50 39.68 µM. Compounds 2-5 exhibited antibacterial activities against the methicillin-resistant Staphylococcus aureus (MRSA) and opportunistic pathogenic bacterium Pseudomonas aeruginosa. The MIC value for compound 6 against MRSA is 44.02 µM. Additionally, Compounds 8, 10, 11 showed weak to moderate inhibitory activities against the ß-secretase (BACE1), with IC50 values of 36.1, 40.9, 34.9 µM, respectively.

12.
Acta Biomater ; 154: 359-373, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36191775

RESUMEN

The nonselective membrane disruption of antimicrobial peptides (AMPs) helps in combating the antibacterial resistance. But their overall positive charges lead to undesirable hemolysis and toxicity toward normal living cells, as well as the rapid clearance from blood circulation. In consequence, developing smart AMPs to optimize the antimicrobial outcomes is highly urgent. Relying on the local acidity of microbial infection sites, in this work, we designed an acidity-triggered charge reversal nanotherapeutics with adaptable geometrical morphology for bacterial targeting and optimized therapy. C16-A3K4-CONH2 was proposed and the ε-amino groups in lysine residues were acylated by dimethylmaleic amide (DMA), enabling the generated C16-A3K4(DMA)-CONH2 to self-assemble into negatively charged spherical nanostructure, which relieved the protein adsorption and prolonged blood circulation in vivo. After the access of C16-A3K4(DMA)-CONH2 into the microbial infection sites, acid-sensitive ß-carboxylic amide would hydrolyze to regenerate the positive C16-A3K4-CONH2 to destabilize the negatively charged bacterial membrane. In the meanwhile, attractively, the self-assembled spherical nanoparticle transformed to rod-like nanostructure, which was in favor of the efficient binding with bacterial membranes due to the larger contact area. Our results showed that the acid-activated AMP nanotherapeutics exhibited strong and broad-spectrum antimicrobial activities against Yeast, Gram-positive Staphylococcus aureus, Gram-negative Escherichia coli, and methicillin-resistant Staphylococcus aureus (MRSA). Moreover, the biocompatible lipopeptide nanotherapeutics dramatically improved the dermapostasis caused by bacterial infection. The strategy of merging pathology-activated therapeutic function and morphological adaptation to augment therapeutic outcomes shows the great potential for bacterial inhibition. STATEMENT OF SIGNIFICANCE: The overall positive charges of antimicrobial peptides (AMPs) lead to undesirable hemolysis and nonselective toxicity, as well as the rapid clearance from blood circulation. Infection-activated lipopeptide nanotherapeutics with adaptable geometrical morphology were developed to address these issues. The self-assembled lipopeptide was pre-decorated to reverse the positive charge to reduce the hemolysis and nonselective cytotoxicity. After accessing the acidic infection sites, the nanotherapeutics recovered the positive charge to destabilize negatively charged bacterial membranes. Meanwhile, the morphology of self-assembled nanotherapeutics transformed from spherical nanoparticles to rod-like nanostructures in the lesion site, facilitating the improved association with bacterial membranes to boost the therapeutic efficiency. These results provide new design rationale for AMPs developed for bacterial inhibition.


Asunto(s)
Antiinfecciosos , Staphylococcus aureus Resistente a Meticilina , Humanos , Lipopéptidos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Péptidos Catiónicos Antimicrobianos/química , Pruebas de Sensibilidad Microbiana , Antiinfecciosos/farmacología , Bacterias , Hemólisis , Amidas , Antibacterianos/farmacología , Antibacterianos/química
13.
Nat Biomed Eng ; 6(8): 928-929, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35986183
14.
J Vis Exp ; (184)2022 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-35781278

RESUMEN

Access to low-burden molecular diagnostics that can be deployed into the community for testing is increasingly important and has meaningful wider implications for the well-being of societies and economic stability. Recent years have seen several new isothermal diagnostic modalities emerge to meet the need for rapid, low-cost molecular diagnostics. We have contributed to this effort through the development and patient validation of toehold switch-based diagnostics, including diagnostics for the mosquito-borne Zika and chikungunya viruses, which provided performance comparable to gold-standard reverse transcription-quantitative polymerase chain reaction (RT-qPCR) based assays. These diagnostics are inexpensive to develop and manufacture, and they have the potential to provide diagnostic capacity to low-resource environments. Here the protocol provides all the steps necessary for the development of a switch-based assay for Zika virus detection. The article takes readers through the stepwise diagnostic development process. First, genomic sequences of Zika virus serve as inputs for the computational design of candidate switches using open-source software. Next, the assembly of the sensors for empirical screening with synthetic RNA sequences and optimization of diagnostic sensitivity is shown. Once complete, validation is performed with patient samples in parallel with RT-qPCR, and a purpose-built optical reader, PLUM. This work provides a technical roadmap to researchers for the development of low-cost toehold switch-based sensors for applications in human health, agriculture, and environmental monitoring.


Asunto(s)
Virus Chikungunya , Infección por el Virus Zika , Virus Zika , Animales , Humanos , ARN Viral/análisis , ARN Viral/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Virus Zika/genética , Infección por el Virus Zika/diagnóstico
15.
Development ; 149(13)2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35819065

RESUMEN

KDM6B-mediated epigenetic modification of the testicular regulator Dmrt1 has previously been identified as the primary switch of the male pathway in a temperature-dependent sex-determination (TSD) system; however, the molecular network of the female pathway has not yet been established. Here, we have functionally characterized for the first time an upstream regulator of the female pathway, the forkhead transcription factor FOXL2, in Trachemys scripta, a turtle species with a TSD system. FOXL2 exhibited temperature-dependent female-specific expression patterns before the onset of gonadal differentiation and was preferentially localized in ovarian somatic cells. Foxl2 responded rapidly to temperature shifts and estrogen. Importantly, forced expression of Foxl2 at the male-producing temperature led to male-to-female sex reversal, as evidenced by the formation of an ovary-like structure, and upregulation of the ovarian regulators Cyp19a1 and R-spondin1. Additionally, knockdown of Foxl2 caused masculinization at the female-producing temperature, which was confirmed by loss of the female phenotype, development of seminiferous tubules, and elevated expression of Dmrt1 and Sox9. Collectively, we demonstrate that Foxl2 expression is necessary and sufficient to drive ovarian determination in T. scripta, suggesting a crucial role of Foxl2 in female sex determination in the TSD system.


Asunto(s)
Tortugas , Animales , Femenino , Regulación del Desarrollo de la Expresión Génica , Gónadas/metabolismo , Masculino , Procesos de Determinación del Sexo/genética , Diferenciación Sexual/genética , Temperatura , Tortugas/genética
16.
PLoS One ; 17(7): e0271133, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35802587

RESUMEN

BACKGROUND: Despite under-reporting, health workers (HWs) accounted for 2 to 30% of the reported COVID-19 cases worldwide. In line with data from other countries, Jordan recorded multiple case surges among HWs. METHODS: Based on the standardized WHO UNITY case-control study protocol on assessing risk factors for SARS-CoV-2 infection in HWs, HWs with confirmed COVID-19 were recruited as cases from eight hospitals in Jordan. HWs exposed to COVID-19 patients in the same setting but without infection were recruited as controls. The study lasted approximately two months (from early January to early March 2021). Regression models were used to analyse exposure risk factors for SARS-CoV-2 infection in HWs; conditional logistic regressions were utilized to estimate odds ratios (ORs) adjusted for the confounding variables. RESULTS: A total of 358 (102 cases and 256 controls) participants were included in the analysis. The multivariate analysis showed that being exposed to COVID-19 patients within 1 metre for more than 15 minutes increased three-fold the odds of infection (OR 2.92, 95% CI 1.25-6.86). Following IPC standard precautions when in contact with patients was a significant protective factor. The multivariate analysis showed that suboptimal adherence to hand hygiene increased the odds of infection by three times (OR 3.18; 95% CI 1.25-8.08). CONCLUSION: Study findings confirmed the role of hand hygiene as one of the most cost-effective measures to combat the spreading of viral infections. Future studies based on the same protocol will enable additional interpretations and confirmation of the Jordan experience.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiología , COVID-19/prevención & control , Estudios de Casos y Controles , Personal de Salud , Humanos , Jordania/epidemiología , Factores de Riesgo
17.
Methods Mol Biol ; 2518: 33-47, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35666437

RESUMEN

Translation activators are an important class of riboregulators that respond to nucleic acid signals by activating gene expression. Toehold switches and single-nucleotide-specific programmable riboregulators (SNIPRs) are two types of translation activators that can detect nearly any nucleic acid sequence using interactions initiated by single-stranded domains known as toeholds. Toehold switches operate with high dynamic range, orthogonality, and programmability, making them capable of detecting a variety of pathogens in paper-based cell-free diagnostic assays. SNIPRs are designed to enable the accurate detection of single-nucleotide mutations, making them valuable tools for mutation and drug-resistance assays. Here we describe the computational design process for generating toehold switches and SNIPRs active against different pathogens and mutations of interest. Such riboregulators can be deployed in paper-based diagnostic assays to enable rapid and low-cost disease detection.


Asunto(s)
Regulación de la Expresión Génica , Ácidos Nucleicos , Nucleótidos , ARN/genética
18.
BMJ Glob Health ; 7(Suppl 3)2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35750342

RESUMEN

Health research, innovation and knowledge management remain major priorities of the WHO's response to the COVID-19 pandemic. WHO's Eastern Mediterranean Regional Office (EMRO) supports priority research initiatives that address gaps in current knowledge regarding the COVID-19 pandemic. Through a specific call for proposals, 122 research proposals were received and reviewed in 2020, of which 17 were recommended for funding from eight countries. Ten countries in the region participated in the global solidarity trial to assess potential therapies for COVID-19. In addition, WHO advocated for early serological and epidemiological investigations ('COVID-19 Unity Studies') on the general population, healthcare workers, pregnant women and neonates, and extending technical, financial and material support for them.Starting in early 2020, scholarly articles on COVID-19 have been published in every issue of the Eastern Mediterranean Health Journal More than 6300 publications on COVID-19 were made available on the WHO knowledge management portal in the last year alone. WHO is also supporting countries in conducting studies to assess the field effectiveness of vaccines deployed nationally. To build and strengthen country capacities, regional webinars and intercountry meetings were conducted on research ethics, national health information systems and evidence-based health policy making. With support from WHO EMRO's new research and knowledge management pillar, countries in the region were well equipped to contribute to a global understanding of the novel virus's characteristics, as well as employ a national response based on informed evidence.


Asunto(s)
COVID-19 , Femenino , Humanos , Recién Nacido , Gestión del Conocimiento , Pandemias/prevención & control , Formulación de Políticas , Embarazo , Organización Mundial de la Salud
19.
Cardiovasc Toxicol ; 22(8): 746-762, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35593990

RESUMEN

PM2.5 exposure can induce or exacerbate heart failure and is associated with an increased risk of heart failure hospitalization and mortality; however, the underlying mechanisms remain unclear. This study focuses on the potential mechanisms underlying PM2.5 induction of cardiomyocyte programmed necrosis as well as its promotion of cardiac function impairment in a mouse model of heart failure with preserved ejection fraction (HFpEF). HFpEF mice were exposed to concentrated ambient PM2.5 (CAP) (CAP group) or filtered air (FA) (FA group) for 6 weeks. Changes in myocardial pathology and cardiac function were documented for comparisons between the two groups. In vitro experiments were performed to measure oxidative stress and mitochondrial permeability transition pore (mPTP) dynamics in H9C2 cells following 24 h exposure to PM2.5. Additionally, co-immunoprecipitation was conducted to detect p53 and cyclophilin D (CypD) interactions. The results showed exposure to CAP promoted cardiac function impairment in HFpEF mice. Myocardial pathology analysis and in vitro experiments demonstrated that PM2.5 led to mitochondrial damage in cardiomyocytes and, eventually, their necrosis. Moreover, our experiments also suggested that PM2.5 increases mitochondrial reactive oxygen species (ROS), induces DNA oxidative damage, and decreases the inner mitochondrial membrane potential (ΔΨm). This indicates the presence of mPTP opening. Co-immunoprecipitation results showed a p53/CypD interaction in the myocardial tissue of HFpEF mice in the CAP group. Inhibition of CypD by cyclosporin A was found to reverse PM2.5-induced mPTP opening and H9C2 cell death. In conclusion, PM2.5 induces mPTP opening to stimulate mitochondria-mediated programmed necrosis of cardiomyocytes, and it might exacerbate cardiac function impairment in HFpEF mice.


Asunto(s)
Insuficiencia Cardíaca , Poro de Transición de la Permeabilidad Mitocondrial , Animales , Muerte Celular/efectos de los fármacos , Peptidil-Prolil Isomerasa F , Insuficiencia Cardíaca/metabolismo , Ratones , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Miocitos Cardíacos/metabolismo , Necrosis/metabolismo , Material Particulado/toxicidad , Volumen Sistólico , Proteína p53 Supresora de Tumor/metabolismo
20.
Cell Discov ; 8(1): 36, 2022 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35443747

RESUMEN

The emergence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants of concern, including Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), and Omicron (B.1.1.529) has aroused concerns over their increased infectivity and transmissibility, as well as decreased sensitivity to SARS-CoV-2-neutralizing antibodies (NAbs) and the current coronavirus disease 2019 (COVID-19) vaccines. Such exigencies call for the development of pan-sarbecovirus vaccines or inhibitors to combat the circulating SARS-CoV-2 NAb-escape variants and other sarbecoviruses. In this study, we isolated a broadly NAb against sarbecoviruses named GW01 from a donor who recovered from COVID-19. Cryo-EM structure and competition assay revealed that GW01 targets a highly conserved epitope in a wide spectrum of different sarbecoviruses. However, we found that GW01, the well-known sarbecovirus NAb S309, and the potent SARS-CoV-2 NAbs CC12.1 and REGN10989 only neutralize about 90% of the 56 tested currently circulating variants of SARS-CoV-2 including Omicron. Therefore, to improve efficacy, we engineered an IgG-like bispecific antibody GW01-REGN10989 (G9) consisting of single-chain antibody fragments (scFv) of GW01 and REGN10989. We found that G9 could neutralize 100% of NAb-escape mutants (23 out of 23), including Omicron variant, with a geometric mean (GM) 50% inhibitory concentration of 8.8 ng/mL. G9 showed prophylactic and therapeutic effects against SARS-CoV-2 infection of both the lung and brain in hACE2-transgenic mice. Site-directed mutagenesis analyses revealed that GW01 and REGN10989 bind to the receptor-binding domain in different epitopes and from different directions. Since G9 targets the epitopes for both GW01 and REGN10989, it was effective against variants with resistance to GW01 or REGN10989 alone and other NAb-escape variants. Therefore, this novel bispecific antibody, G9, is a strong candidate for the treatment and prevention of infection by SARS-CoV-2, NAb-escape variants, and other sarbecoviruses that may cause future emerging or re-emerging coronavirus diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...